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a b s t r a c t

Adsorption potential of shells of Sunflower to remove Cu2+ ions from aqueous solution was investigated
using a fixed-bed adsorption column. The effects of inlet Cuo

2+ concentration (20–60 mg/L), feed flow rate
(9–21 mL/min) and bed height (5–15 cm), initial solution pH (3–5.6) and particle size (0.25–0.5, 0.5–1 and
1–2 mm) on the breakthrough characteristics of the adsorption system were investigated. The adsorption
eywords:
ixed bed column
opper ions
unflower
eural Network
dsorbent capacity

capacities of the adsorbent at different particle sizes (0.25–0.5, 0.5–1, 1–2 mm) were determined as 17.26,
7.36 and 5.48 mg/g, respectively. The highest experimental and theoretical bed capacities were obtained
to be 25.95 and 26.22 mg/g at inlet Cuo

2+ concentration of 60 mg/L, bed height of 5 cm and flow rate of
5 mL/min, pH of 5.6 and particle size of 0.25–0.5 mm. A relationship between the predicted and observed
data was conducted. The ANN model yielded determination coefficient of 0.986 and root mean square
error of 0.018. The results indicated that Sunflower waste is a suitable adsorbent for the removal of Cu2+

n.
ions from aqueous solutio

. Introduction

Human activities, such as the discharge of industrial wastes
nd mining operations, have resulted in the accumulation of met-
ls in the environment [1,2]. Some metals such as Ca, Co, Cr, Cu,
n, Fe, K, Mg, Mn, Na and Ni are essential micro-nutrients for
ost living organisms. One of the most important functions of the
icro-nutrients is their role in metalloenzymes. However, when

he concentrations of beneficial metals, for instance, copper or zinc
n the environment are excessively high they can become toxic to
hese microorganisms and human [3].

The uptake of heavy metal ions from wastewater has attracted
great attention in recent years for global awareness of the under-

ying detriment of toxic metals in the environment. Application
f traditional processes for the uptake of heavy metals has enor-
ous cost, and they cause further environment damage because of

he continuous input of chemicals. Hence, easy, effective, economic
nd ecofriendly techniques are required for fine-tuning of effluent
astewater treatment [4].

Biosorption of metals by biomass has been much explored in

ecent years. Different form of inexpensive, non-living plant mate-
ial such as rice husk [5], sawdust [6] and pine bark and canola meal
7–10] have been widely investigated as potential adsorbents for
eavy metals.

∗ Corresponding author. Tel.: +90 442 231 4601.
E-mail address: eoguz@atauni.edu.tr (E. Oguz).
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© 2010 Elsevier B.V. All rights reserved.

The biosorption capacity parameter obtained from a batch
experiment is useful in providing information about effectiveness
of heavy metal-biosorbent system. However, the data obtained
under batch conditions are generally not applicable to most treat-
ment system where contact time is not sufficient long for the
attainment of equilibrium. Hence, there is a need to perform equi-
librium studies using columns [11].

In practice the column type continuous flow operations which
are more useful in large-scale wastewater treatment have distinct
advantages over batch treatment. It is simple to operate, attains a
high yield and it can be easily scaled up from a laboratory-scale pro-
cedure. The stages in the separation process can also be automated
and high degrees of purification can often be achieved in a single
step process. A packed bed is also an effective process for cyclic
sorption/desorption, as it makes the best use of the concentration
difference known to be a driving force for biosorption and allows
more efficient utilization of the sorbent capacity and results in a
better quality of the effluent. A large volume of wastewater can be
continuously treated using a defined quantity of biosorbent in the
column [12–15].

The aim of this study is to remove Cu2+ ions by the shells of
Sunflower from aqueous solution using a fixed-bed adsorption col-
umn. We here have investigated the effects of flow rate, pH value,

influent concentration, bed depth and particle size on metal uptake
by the shells of Sunflower in a fixed bed column. A model based on
an artificial neural network (ANN) has been constructed to model
Cu2+ concentration removed from aqueous solution as a function
of emperical parameters.

dx.doi.org/10.1016/j.cej.2010.08.016
http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:eoguz@atauni.edu.tr
dx.doi.org/10.1016/j.cej.2010.08.016
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. Materials and methods

.1. Biosorbent preparation

Shells of Sunflower were used in this study. The shells of Sun-
ower were gathered in 2009. Fresh shells of Sunflower were dried
n outdoors for 72 h and cut into small pieces, ground in a blender
o granulate and get it sieved to separate to different particle sizes
0.25–0.5, 0.5–1 and 1–2 mm).

The surface area of the shells of Sunflower was measured by
ET method at 77 K using a Quantachrome QS-17 model apparatus
16]. The surface area of the shells of Sunflower was determined as
.82 m2/g.

Cu2+ solutions were prepared by diluting 400 ppm of
uSO4·5H2O (Merck) stock solution with deionized water to
desired concentration range between 20 and 60 mg/L. The initial

oncentration of the Cuo
2+ in the solution and samples after

iosorption process was complexometrically determined [17].

.2. Column experiments

Continuous flow adsorption experiments were conducted in
eflon columns of 1 cm i.d. and 5, 10 and 15 cm heights as seen from
ig. 1. A known quantity of adsorbent was placed in the column to
eceive the desired bed height. Cu2+ solution having an initial con-
entration of 40 mg/L was pumped upward through the column at
desired flow rate by a peristaltic pump. Samples were collected

rom the exit of the column at different intervals and analyzed for
u2+ concentration. Operation of the column was stopped when the
ffluent Cu2+ concentration equals approximately influent Cuo

2+

oncentration.
The total quantity of metal adsorbated in the column was cal-

ulated from the area above the breakthrough curve (outlet metal
oncentration versus time) multiplied by the flow rate. Dividing the
etal mass by the biosorbent mass (M) leads to the uptake capac-

ty (Q) of the biomass. The total amount of metal ions sent to the
olumn can be calculated from Eq. (1) [18].
total = CoFte

1000
(1)

here Co is the inlet metal ion concentration (mg/L), F the volu-
etric flow rate (mL/min) and te is the exhaustion time (min). The
ass transfer zone can be calculated from the difference between

ig. 2. Experimental and theoretical breakthrough curves of Cu2+ adsorption as a functio
article size 0.25–0.5 mm).
Fig. 1. Schematic diagram of experimental set up: (1) feed tank; (2) peristaltic
pump; (3) fixed bed of the shells of Sunflower; (4) bed support; (5) sampling port
measuring Cu2+ concentration (6) effluent collector.

column exhaustion time (te) and column breakthrough time (tb).
The slope of the breakthrough curve from tb to te was represented
by dc/dt. Total metal removal (%) with respect to flow volume can
be calculated from the ratio of metal mass adsorbed (mad) to the
total amount of metal ions sent to the column, given by Eq. (2) [19].

total metal removal (%) = mad

mtotal
× 100 (2)

The amount of metal retained in the column depends on the
influent metal concentration and can be calculated from the area
above the breakthrough curve (Eq. (3)) [20].

q = CoQ

m × 1000

∫ t

0

(
1 − Ct

Co

)
dt (3)

where q represents the amount of metal retained (mg of copper

per g of adsorbent), Ct and Co are the copper concentrations at the
column effluent and influent (mg/L) respectively, Q is the flow rate
(mL/min), m is the mass of adsorbent in the column (g) and t is the
adsorption time (min).

n of inlet Cu2+ concentration (T 15 ◦C, pH 5.6, flow rate 9 mL/min, bed depth 5 cm,
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ig. 3. Experimental and theoretical breakthrough curves of Cu2+ adsorption as a fun

. Results

.1. The effect of experimental conditions on the breakthrough
urve

The effect of influent Cuo
2+ concentration on the shape of the

reakthrough curves was shown in Fig. 2. As shown in Fig. 2, in
he interval of 50 min, the value of Ct/Co reached 0.5, 0.79 and 0.82
hen influent concentration was 20, 40 and 60 mg/L respectively.

It is illustrated in Fig. 2 that the breakthrough time decreased
ith the increase of influent Cu 2+ concentration. At lower influent
o

uo
2+ concentration, breakthrough curve was dispersed and break-

hrough occurred slower. As influent concentration increased,
harper breakthrough curves were observed. These results demon-
trate that the change of concentration gradient affects the

ig. 4. Experimental and theoretical breakthrough curves of Cu2+ adsorption as a function
of flow rate (T 15 ◦C, pH 5.6, Co 40 ppm, bed depth 5 cm, particle size 0.25–0.5 mm).

saturation rate and breakthrough time. These results also show
that the change of concentration gradient affects the saturation rate
of adsorbent and breakthrough time, in other words, the diffusion
process is concentration dependent. As the influent concentration
increases, Cuo

2+ loading rate increases, so does the driving force for
mass transfer, in which adsorption zone length decreases [21].

The effect of flow rate on the adsorption of Cuo
2+ in the fixed

bed with bed depth of 5 cm was investigated. The flow rate was
changed in the range of 9–21 mL/min while the concentration of
Cuo

2+ in influent was kept constant at 40 mg/L. The adsorption
breakthrough curves obtained at different flow rates are shown in

Fig. 3. The obtained results show that the adsorption of Cuo

2+ on the
shells of Sunflower was strongly influenced by the flow rate. All the
breakthrough curves had a similar shape. The breakthrough curves
shifted to the origin with increasing flow rate, and an earlier break-

of bed depth (T 15 ◦C, pH 5.6, Co 40 ppm, flow rate 9 mL/min, particle size 1–2 mm).
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ig. 5. Experimental and theoretical breakthrough curves of Cu2+ adsorption as a fu
ize 0.25–0.5 mm).

hrough time and saturation time were observed for a higher flow
ate. Fig. 3 shows that Cuo

2+ concentration in the effluent increased
apidly after the breakthrough time, as the solution continued to
ow, the fixed bed became saturated with Cuo

2+, and Cuo
2+ concen-

ration in the effluent approached the influent concentration. Both
quilibrium uptake and total removal efficiency of Cuo

2+ decreased
ith increasing flow rate, and their maximum value was obtained

t the lowest flow rate of 9 mL/min. As shown in Fig. 2, in the inter-
al of 50 min, the value of Ct/Co reached 0.91, 0.95 and 0.99 when
ow rate was 9, 14.6 and 21 mL/min, respectively.

Another important parameter in the adsorption process is rele-
ant to the bed depth. However, because of the pressure drop and

he handling problems of the smaller particle size <0.5–1 mm in
he column studies, the particle sizes of 1–2 mm were used to com-
are Ct/Co with adsorbent capacities for the bed depths of 5, 10 and
5 cm.

ig. 6. Experimental and theoretical breakthrough curves of Cu2+ adsorption as a functio
of pH of solution (T 15 ◦C, bed depth 5 cm, Co 40 ppm, flow rate 9 mL/min, particle

The retention of metals in a fixed bed column depends, among
other factors, on the quantity of adsorbent used or, on the bed depth
of the column works. The adsorption performance of the shells of
Sunflower was investigated at various bed heights of 5, 10 and 15 cm
at a flow rate of 9 mL/min where inlet Cuo

2+ concentration was
kept constant at 40 ppm. Fig. 4 shows the breakthrough profile of
Cuo

2+ adsorption at different bed heights. For the different three
bed depths used, as the bed depth increases, the quantity of the
removed Cuo

2+ concentration increases which is also illustrated by
the service time change. As shown in Fig. 4, in the interval of 50 min,
the value of Ct/Co reached 0.82, 0.79 and 0.77 when bed depth was
5, 10 and 15 cm, respectively. At the column depth with 5 cm, the

adsorbent becomes saturated very quickly because saturation at
the binding sites is faster.

The pH value of the solution is an important controlling parame-
ter in the adsorption process, and the pH value of aqueous solution

n of particle size (T 15 ◦C, bed depth 5 cm, Co 40 ppm, flow rate 9 mL/min, pH 5.6).
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Table 1
Shift and scale factors.

Shift Scale

t (min) −0.038 0.007
Cuo

++ (mg/L) −0.500 0.025
Q (mL/min) −0.750 0.083
pH −1.200 0.400
M (g) −0.189 0.315

tial; it is the first step to build an ANN. Training means that the

T
C

Fig. 7. The architecture of the ANNs used in this study.

as more influence to uptake Cuo
2+ ions in the fixed bed. It influ-

nces both the adsorbent surface metal binding sites and the metal
hemistry in water. When pH of feed solution was changed from 3
o 5.6, the highest adsorbent capacity and the longest breakthrough
ime was achieved at pH 5.6. As shown in Fig. 5, in the interval of
0 min, the value of Ct/Co reached 0.90, 0.82 and 0.79 when pH value
f the solution was 3, 4 and 5.6, respectively. At the column depth
ith 5 cm, the adsorbent becomes saturated very quickly because

aturation at the binding sites is faster.
The pH of the aqueous solution is also an important controlling

arameter in the adsorption process [22]. In the range of pH 3–5.6,
here are three species present in solution as suggested by [22]. The
ominant species between pH 3 and 5.6 in the Cu2+ solution were
u2+, Cu(OH)+ and Cu(OH)2. These species are adsorbated with elec-
rostatically interaction at the surface of the shells of Sunflower. As
he pH decreases, the surface of Sunflower exhibits an increasing
ositive characteristic, thus breakthrough time decreased. Obvi-
usly with an increase of pH in the influent, the breakthrough
urves shifted from left to right, which indicates that more metal
ons can be removed.

Another important parameter in the adsorption process is
elated to the particle size of the adsorbent. The particle sizes were
.25–0.5, 0.5–1 and 1–2 mm, while the bed depth, influent Cu2+

oncentration and pH were kept constant at 5 cm, 40 mg/L and 5.6,

espectively. The breakthrough curves of concerning with particle
ize are given in Fig. 6. An increase in the particle size appeared
o increase the sharpness of the breakthrough curve. Furthermore,
he adsorption capacity for the larger particle size is lower than

able 2
onnection weights and biases.

Bias 2.1 2.2 2.3

b1

−0.913 0.297 0.763
w1

1.1 3.257 −1.396 3.869
1.2 −0.675 −1.006 2.468
1.3 0.458 −0.442 0.502
1.4 0.387 −2.189 −0.894
1.5 0.072 0.844 1.799
1.6 0.774 −0.3909 3.194
1.7 −0.679 0.213 1.340
2.1
2.2
2.3
2.4
2.5
P.S (mm) −0.333 0.888
Z (cm) −0.500 0.100
Cut

++ (mg/L) 0.000 1.015

that for smaller one. A rapid decrease in the column adsorption
capacity with an increase in the particle size was observed. The
clear shift of the breakthrough curve was obtained from 0.25–0.5
to 1–2 mm. This is mainly true due to the higher surface area of the
smaller particle size. Thus, a higher adsorption capacity and shorter
intraparticle diffusion path are expected. As shown in Fig. 6, in the
interval of 50 min, the value of Ct/Co reached 0.79, 0.81 and 0.83
when the particle size was 0.25–0.5, 0.5–1 and 1–2 mm, respec-
tively.

4. Application of artificial neural network

A linear model is not suitable to constitute a satisfying relation-
ship among the input variables for a biosorption process. In fact, it
is reasonable to consider that such variables are not totally inde-
pendent. The ANN approach seems to be completely suitable to the
problems where the relations between variables are not linear and
complex [23,24].

A neuron sums the product of each connection weight (wjk) from
a neuron (j) to the neuron (k) and, input (xj) and the additional
weight called the bias to get the value of sum for the neuron. The
ith neuron has a summer that gathers its weighted input wij · pj and
the bias bi to form its net input ni, which given by Eq. (4)

ni =
∑

wijxj + bi (4)

where wij denotes the strength of the connection from the jth input
to the ith neuron, xj is the input vector, bi is the ith neuron bias. The
sum of the weighted inputs is further transformed with a transfer
function to get the output value. There are several transfer func-
tions; the most common is the sigmoidal function [23–26]. To find
suitable ws and biases for each neuron, a process training is essen-
weights are corrected to produce prespecified (“correct”, known
from experiments) target values, and the training requires sets of
pairs (XS, YS) for input: the actual input into the network is a vector
(XS), and the corresponding target is labelled (YS) after successful

2.4 2.5 3.1

b2

−0.001 0.284 1.347

−2.933 −1.574
0.751 0.262

−1.358 −1.831
−0.845 −0.515

1.115 0.286
−1.816 0.054

0.399 −0.137 w2

2.902
0.874
0.298
0.859

−0.900



E. Oguz, M. Ersoy / Chemical Engineering Journal 164 (2010) 56–62 61

Table 3
Sensitivity analysis results.

pH M (g) P.S (mm) Z (cm)

5 4 2 7
2.236 2.655 4.434 1.278
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t Cuo
++ (mg/L) Q (mL/min)

Rank 1 6 3
Ratio 9.650 2.165 3.220

raining. When correct values of YS for each vector of XS from the
raining set are obtained, it is hoped that the network will give cor-
ect predictions of Y for any new object of X according to the ANN
odel fundamentals and with the use of more data for training the

etwork, better result would be obtained. The most utilized training
ethod for multilayered neural network is called back propagation

27].
Information about errors (differences between target and pre-

icted values) is filtered back through the system and is used
o adjust the connections between the layers, thus performance
mproves. In the early standard algorithm, random initial set of

eights was assigned to the neural network, and then by consider-
ng the input data, weights were adjusted, so the output error would
e on its minimum [28]. In this study, one-layered back propagation
eural network was used for modelling of the uptake of Cu2+ ions

rom aqueous solutions (Fig. 7). The input variables to the neural
etwork are as follows: the treatment time (t), the concentration of

nitial Cuo
2+, adsorbent dosage, pH, flow rate, bed depth and par-

icle size. Cuo
2+ concentration as a function of reaction time was

hosen as the experimental response or output variable. In order
o model the Cut

2+ concentrations with ANN, the Statistica soft-
are program was used. The coefficient of root mean square error

RMSE) is the main criterion to evaluate the performance of ANN,
hich is defined as follows:

MSE =
√

(obs − pre)2

n
(6)

Low value of the RMSE satisfies the statistical evaluation of pre-
iction for the validation [29,30]. From Fig. 6, it can be observed
hat the newly constructed neural network was precise in predict-
ng the Cu2+ uptake with a high correlation coefficient of 0.986. This
hows that the developed Neural Network Model can be precise in
redicting the removal of Cu2+ by the shells of Sunflower for the
ange of experimental conditions [31].

Before the network was trained, the input and the output data
ere normalized. The scale and shift factors used in each input and

utput are given in Table 1.
The weight coefficients and the biases given in Table 2 are the

alues obtained for the normalized data in order to determine
he actual (experimental) Cut

2+ concentration. An inverse trans-
ormation on this data is performed using shift and scale factors.
fter long training phases, the best result was obtained from the
evenberg–Marquardt algorithm.

The hyperbolic tangent function in the hidden layer and the lin-
ar activation function in the output layer were used in the model.
t was observed that the optimal network was found to have seven
nputs, one hidden layer with five neurons and one output layer.
he optimal network architecture (7:7–5–1:1) is shown in Fig. 7.

Sensitivity analysis is a useful technique to assess the relative
ontribution of the input variables to the performance of a neural
etwork by testing the neural network when each input variable is
navailable. This indicates that the input variables are considered
o be the most important ones by a particular neural network. If
he ratio is one or lower, the input variable has no effect on the

erformance of the network. Otherwise, ratios of input parameters
re more than one, all input variables are meaningful. The results
f the sensitivity analysis are given in Table 3.

It can be seen from Table 3 that the most important parameter
hat affects the removal of the Cut

2+ are adsorption time, parti-
Fig. 8. The relationship between observed and theoretical values relating to general
model (R2 0.986).

cle size (P.S), flow rate (Q), adsorbent dosage (M), pH, initial Cuo
2+

concentration and bed depth (Z), respectively.
Before training the network, both the input and output vari-

ables were normalized within the range of 0–1 using a minimax
algorithm. The minimum and maximum of the data set were found
and scaling factors were selected so that these were mapped to the
desired minimum and maximum values.

The number of experimental data used in the ANN is 324 which
were divided into three sections: the training set (162 data), veri-
fication set (81 data) and test set (81 data). Training algorithms do
not use the verification or test sets to adjust network weights. The
verification set may optionally be used to track error performance
of the network to identify the best network and to stop training,
if over-learning occurs. The test set is not used in training at all,
and it is designed to give an independent assessment of the per-
formance of the network when the design procedure of an entire
network is completed. The assignment of the cases to the training,
verification and test subsets can sometimes affect the performance
of the training algorithms. In order to eliminate this drawback, the
cases should be shuffled randomly between subsets. The cases can
be left in their original order or grouped together in the subsets. In
this model, the cases were shuffled randomly between the subsets
(training, test and verification).

The general model obtained from the ANN belonging to all of
the parameters (adsorption time, Cuo

++ concentration, adsorbent
dosage, adsorbent particle size, agitation rate, pH) was given in
Fig. 8.

5. Conclusion

The shells of Sunflower were used to define the experimental
and theoretical adsorbent capacities in a fixed bed column. The
Ct/Co, qexp and qcal are a function of the adsorption time, adsorbent
dosage, adsorbate concentration, adsorbent particle size, pH and

bed depth. An artificial Neural Network Modelling has been used to
investigate relation between the cause and effect in the adsorption
studies of Cu2+ ions. The ANN model could describe the behavior of
the adsorption with the adopted experimental conditions. A simu-
lation based on the ANN model has then been performed in order to



6 gineer

e
m
u
s
t
t
i
t
p

A

t

R

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

2 E. Oguz, M. Ersoy / Chemical En

stimate the behavior of the system under different conditions. The
odel based on the ANN has predicted the concentrations of Cut

2+

ptake in a fixed bed column during adsorption time. A relation-
hip between predicted and observed data has been constructed. In
he ANN model, the value of root mean square error was obtained
o be 0.41. According to the sensitivity analysis results, the most
mportant parameters affecting the adsorbent capacity were found
o be as adsorption time, particle size, flow rate, adsorbent dosage,
H, initial Cuo

2+ concentration and bed depth.
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